

					Differentiability					
		Ba	sic l	Level						
1.	If $f(x) = \begin{cases} 1 & , x < 0 \\ 1 + \sin x & , 0 \le x \end{cases}$	then at $x = 0$, the value $x \le \pi / 2$	alue o	of $f'(x)$ is equal to	[Rajasthan PET 1990]					
	(a) 1	(b) O	(c)	∞	(d)Derivative does not					
exist 2.	If $f(x) = x - 3 $, then $f'(3)$	equals								
	(a) 0	(b) 1	(c)	-1	(d) Does not exist					
3.		then at $x = 0$, the function								
	(a) Discontinuous		(b)	Continuous but not differe	entiable					
	(c) Both continuous and	l differentiable	(d)	None of these						
4.	If $f(x) = x - 3 $, then <i>f</i> is	2			[Rajasthan PET 1994]					
	 (a) Discontinuous at x = (c) Differentiable at x = 			(b) (d)	Not differentiable at $x = 2$ Continuous but not					
diffe	rentiable at $x = 3$	5		(u)	continuous but not					
5.	If $f(x) = \begin{cases} x+1 & \text{, when } x < \\ 2x-1 & \text{, when } x \ge \end{cases}$	$\frac{2}{2}$, then $f'(x)$ at $x = 2$ equal	.S	[Rajasthan I	PET 1992; Karnataka CET 2002]					
	(a) 0	(b) 1	(c)		(d) Does not exist					
6.	If $f(x) = \begin{cases} x^2 \sin(1/x), & \text{when} \\ 0, & \text{when} \end{cases}$	$x \neq 0$, then at $x = 0$, value x = 0	e of f	r(x) equals	[Rajasthan PET 1991]					
	(a) 1	(b) O	(c)	∞	(d) Does not exist					
7.	If $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists fi	nitely, then								
	(a) $\lim_{x \to c} f(x) = f(c)$	(b) $\lim_{x \to c} f'(x) = f'(c)$	(c)	$\lim_{x \to c} f(x)$ does not exist	(d) $\lim_{x \to c} f(x)$ may or may not					
exist										
8.	If $f(x) = \frac{ x-1 }{ x-1 }, x \neq 1$ and	f(1) = 1. Then which of the f	follov	wing statement is true						
9.		1 (b) Discontinuous at $x = 1$ $x, y \in R$. If $f'(1) = 2$ and $f(4)$			(d) Discontinuous for $x > 1$					
	(a) 4	(b) 1	(c)	$\frac{1}{2}$	(d) 2					
10.	The derivative of $f(x) \neq f(x)$	x at $x = 0$ is		-						
	(a) 1	(b) o	(c)	-1	(d) Does not exist					

Get More Learning Materials Here : 📕

CLICK HERE

11.	If $f(x) = \begin{cases} e^x + ax, & x < 0 \\ b(x-1)^2, & x \ge 0 \end{cases}$) is differentiable at $x = 0$ t	hen (a	<i>a,b</i>) is							
	(a) (-3,-1)			(c) (3,1) (d) (3,-1)							
12.	At the point $x = 1$, the	function $f(x) = \begin{cases} x^3 - 1; & 1 < x \\ x - 1; & -\infty < \end{cases}$	$<\infty$ $x \le 1$								
diffe	(a) Continuous and di erentiable	fferentiable		(b)	Continuous	and	no				
anne	(c) Discontinuous and	l differentiable	(d)) Discontinuous and not dif	ferentiable						
13.	The function $ x^3 $ is		(u)								
0	(a) Differentiable eve	rywhere		(b)	Continuous	but	no				
diffe	erentiable at $x = 0$, ,									
∞]	(c) Not a continuous f	function		(d) A function with range							
14.	For the function $f(x)$ =	$\ddagger x^2 - 5x + 6$ the derivative	from	the right $f'(2+)$; and the c	lerivative from	eft f'(2-) are				
resp	(a) 1, - 1	(b) -1, 1	(c)	0, 2	(d) None of th	iese					
15.	Let $f(x)$ be an even further			·, _	(4) 110110 01 01						
		n (b) Is an odd function	(c)	May be even or odd	(d) None of th	iese					
16.	Let $f(x)$ be an odd fun										
		n (b) Is an odd function		May be even or odd	(d) None of th	lese					
17.	Let $g(x)$ be the inverse	e of the function $f(x)$ and $f'(x)$	$(x) = \frac{1}{1}$	$\frac{1}{x^3}$. Then $g'(x)$ is equal to							
	(a) $\frac{1}{1+(g(x))^3}$	(b) $\frac{1}{1+(f(x))^3}$	(c)	$1 + \left(g(x)\right)^3$	(d) $1 + (f(x))^3$						
18.	3. Let $g(x)$ be the inverse of an invertible function $f(x)$ which is differentiable at $x = c$, then $g'(f(c))$ equals										
	(a) f'(c)	(b) $\frac{1}{f'(c)}$	(c)	f(c)	(d) None of th	iese					
	$\begin{cases} x+2 & , -1 < 0 \end{cases}$	< <i>x</i> < 3									
19.	If $f(x) = \begin{cases} x+2 & , -1 < 5 \\ 5 & , x = 5 \\ 8-x & , x > \end{cases}$	3 then at $x = 3, f'(x) =$ 3				[MP PET :	2001				
	(a) 1	(b) -1	(c)		(d) Does not e	exist					
20.	If $f(x) = (x - x_0) g(x)$, wh	here $g(x)$ is continous at x_0 ,	then	$f'(x_0)$ is equal to							
	(a) 0	(b) x ₀	(c)	$g(x_0)$	(d) None of th	iese					
21.	Function $f(x) = x + x $	x-1 is not differentiable at			[Rajast	han PET :	1996				
	(a) $x = 1, -1$		(c)	x = 0, 1	(d) $x = 1, 2$						
22.	If $f(x) = \begin{cases} e^x ; x \le 0 \\ 1-x ; x > 0 \end{cases}$, then			I	Roorkee	1995				
	(a) $f(x)$ is differential	ble at $x = 0$		(b)	(b) $f(x)$ is continuou						
	(c) $f(x)$ is differential	ble at $x = 1$		(d)	f(x) is continuous at $x = 1$						
23.	The function which is	continuous for all real value	es of x	and differentiable at $x = 0$), is						
	(a) x	(b) log <i>x</i>	(c)	$\sin x$	(d) $x^{1/2}$						
		Adva	ance	Level							

Get More Learning Materials Here : 💻

CLICK HERE

R www.studentbro.in

24. The number of points at which the function $f(x) = |x - 0.5| + |x - 1| + \tan x$ does not have a derivative in the interval (0, 2) is

[UP SEAT 1995]

Regional www.studentbro.in

(a) 1 (b) 2 (c) 3 (d) 4
25. If
$$f(x) = \begin{cases} ax^2 + bx + bx = 0, x \le 1 \\ bx^2 + ax + c_x & x > 1 \end{cases}$$
. Then $f(x)$ is continuous and differentiable at $x = 1$ if $f(x) = \begin{cases} ax^2 - bx | x| < 1 \\ \frac{1}{|x|} & |x| \ge 1 \end{cases}$ is differentiable at $x = 1$, then
(a) $a = b_x = -\frac{1}{2}$ (b) $a = b_x = c$ (c) $a = b_x = -0$ (d) $a = b_x = c$ 0
26. If $f(x) = \begin{cases} ax^2 - bx | x| < 1 \\ \frac{1}{|x|} & |x| \ge 1 \end{cases}$ is differentiable at $x = 1$, then
(a) $a = \frac{1}{2}, b = -\frac{1}{2}$ (b) $a = -\frac{1}{2}, b = -\frac{3}{2}$ (c) $a = b = \frac{1}{2}$ (d) $a = b = -\frac{1}{2}$
27. The set of points where the function $f(x) + |x - 1| e^x$ is differentiable is
(a) R (b) $R - (1)$ (c) $R - (-1)$ (d) $R - (0)$
28. Let $f(x)$ be defined on R such that $f(1) = 2, f(2) = 8$ and $f(u + v) = f(u) + kav - 2v^2$ for all $u, v \in R$ and $u \neq v$ (k is a fixed constant). Then
(a) $f(x) = 8x$ (b) $f(x) = 8x$ (c) $f(x) = x$ (d) None of these
29. Let $f(x) - k$ be a function defined by $f(x) = \max \{x, x^3\}$. The set of all points where $f(x)$ is not differentiable is
(a) $(-1, 1)$ (b) $(-1, 0)$ (c) $[0, 1]$ (d) $(-1, 0, 1]$
30. Let $f(x) = \begin{cases} 0, x < 0 \\ x^2 - x > 0 \end{cases}$ then for all values of x [MP PET 2002]
(a) $f(x) = \sin x$ (b) $\sin 1$ (c) Not continuous and differentiable
(c) f' is continuous but not differentiable
(d) f' is continuous and differentiable
(d) f' is continuous and differentiable
(e) $f(x) = \sin x$ (h) $\sin 1$ (c) Not continuous at $x = 1$ (d) None of these
31. If $\begin{cases} u(x) = \sin x \\ 0 \ f(x) = \sin x \\ 0 \ f(x) = 0 \ f(x) = 0 \ f(x) = 0 \ f(x) = (x)$ (b) $f(x) = 1/2, b = -3/2 \ f(x) = 1, b = -1 \ f(x) | x| \ge 1 \ f(x) = 1, b = -1 \ f(x) | x| \ge 1 \ f(x) = 1, b = -1 \ f(x) | x| \ge 1 \ f(x) = 1, b = -1 \ f(x) | x| \ge 1 \ f(x) = 1, b = -1 \ f(x) | x| \ge 1 \ f(x) = 1, b = -1 \ f(x) | x| \le 1 \ f(x) = 1, b = -1 \ f(x) | x| = 1, b = -1 \ f(x) | x| = 1, b = -1 \ f(x) | x| = 1, b = -1 \ f(x) | x| = 1, b = -1 \ f(x) | x| = 1, b = -1 \ f(x) | x| = 1, b = -1 \ f(x) | x| = 1, b = -1 \ f(x) | x| = 1, b = -1 \ f(x) | x| = 1, b = -1 \ f(x) | x| = 1, b = -1 \ f(x) | x|$

CLICK HERE


>>>

Get More Learning Materials Here : 📕

Functions, Limits, Continuity and Differentiability

(d) None of these	
(d) [0,∞)	
(d) None of these	
re differentiable at $x = 0$	
f(x) and $g(x)$ both are	not
(c) Differentiable at x	_0(
	-0(
(c) <i>f</i> ' is continuous	(d)
is	
(d) (0,∞)	
(1) = 0, f'(1) = 2, g'(1) = 4, f(2) = 3, g(2)	= 9,
(d) ⁻⁵	
(d) $R - \{0\}$	
(d) $c = 0, a = 0, b \in R$	
[IIT 1	979]
(d) Does not exist	
Every where continuous	s (d)
=0 (c) Differentiable at	only
(d) Neither $x = 0$ nor x	<i>z</i> = 1
	(d) Neither $x = 0$ nor x

Get More Learning Materials Here : 💻

126 Functions, Limits, Continuity and

50. If
$$g(x) = x f(x)$$
 where $f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$ then at $x = 0$
(a) g is differentiable but g' is discontinuous function (b) Both f and g are differentiable (c) g is differentiable and g' is continuous function (d) None of these
51. The set of points where $f(x) = x \mid x \mid$ is differentiable two times is
(a) R_0 (b) R_+ (c) R (d) None of these
52. If $f(x) = \begin{cases} \frac{x(3e^{1/x} + 4)}{2 - e^{1/x}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, then [Roorkee 1995]
(a) $\lim_{x \to 0} f(x) = 1$ (b) $f(x)$ is continuous at $x = 0$ (c) $f(x)$ is differentiable at $x = 0$ (d) $f'(0 + 0) = 3$

Get More Learning Materials Here : 💻

Answer Sheet

	Assignment (Basic and Advance Level)																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
d	d	b	d	d	b	a	b	d	d	b	b	a,d	a	b	a	С	b	d	с
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
С	b,d	с	с	a	b	b	d	d	с	a	a	a	a	d	a	a	b	a	b
41	42	43	44	45	46	47	48	49	50	51	52								
a,c	a	d	с	b	b	d	b	b	b	a	b								

Get More Learning Materials Here : 💻

